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Eigenmode Analysis of a Two Element Segmented
Capped Monopole Antenna
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Abstract—The behavior of a two element segmented capped
monopole antenna is described in terms of three natural reso-
nances of the antenna structure. A numerical eigenmode solver
is used to derive the resonant frequency and -factor of the
natural resonances, as well as the impedance properties of these
modes when excited individually. The impedance of the antenna
is described as a lumped element network, where the component
values of the network are determined from the impedance pa-
rameters of the resonant modes and the static properties of the
antenna structure. The model is applied to predict the behavior of
the antenna when a lumped element inductor is used to connect
the two segments. The inductor tunes the properties of one of
the three resonances, enabling the impedance bandwidth to be
optimized. The analysis is then extended to predict the behavior of
the antenna when the two vertical elements have different radii,
a configuration that enables wide bandwidth operation without
the use of an inductor. The modal analysis accurately predicts the
impedance and far-field properties of the antennas. Analyzing the
antenna in terms of its natural resonant modes provides physical
insights into both its behavior and the fundamental limitations of
its performance.

Index Terms—Electrically small antennas, factor, resonant
antennas .

I. INTRODUCTION

T HIS paper presents an eigenmode analysis of a two ele-
ment segmented capped monopole, in order to elucidate

the physical mechanisms underlying the behavior of this an-
tenna, and to understand its bandwidth limitations. Some new
aspects of the eigenmode analysis technique [1] are introduced,
enabling it to be applied to a broader set of antenna structures.
The analysis was previously applied towards understanding
small spherical antennas composed of multiple non-intercon-
nected elements [1], [2]; here we adapt the analysis to describe
a folded antenna geometry.

The antennas described here belong to a general class of
segmented and/or folded capped monopoles like that described
by Goubau [3], which have been the subject of numerous
studies [4]–[8]. These antennas are appealing because they
achieve a low radiation -factor for their size, and also exhibit
a multi-resonant impedance response, leading to excellent
bandwidth behavior in a vertically polarized electrically short
structure. Goubau’s paper describes a four element segmented
monopole with inductive connections among the various seg-
ments. Though some detailed modeling work has been done
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on this design [9], a straightforward intuitive description of
the underlying physics of this antenna has not appeared in the
literature; one goal of this paper is to take the first steps to-
ward developing such a physical picture. The antennas studied
here are simpler structures than Goubau’s original design:
a symmetric two segment antenna (see Fig. 3) that uses a
lumped element inductor between the two segments to optimize
the bandwidth, and an asymmetric version (see Fig. 12) that
achieves broadband performance without the use of a lumped
element inductor. Future work will extend this analysis to more
complex structures.

We begin in Section II by analyzing the simple cylin-
drical capped monopole antenna (not segmented), and use the
eigenmode analysis to derive a lumped element model for its
impedance response. In contrast to [1], the fundamental mode
is represented using a model that does not require a frequency
dependent resistive element. This lumped element model pro-
vides a precise match to the harmonic simulation of the antenna
impedance over a wide range of frequencies.

In Section III, we analyze the two element segmented capped
monopole with a perfectly conducting connector piece between
the segments (very small inductance). The behavior of this an-
tenna is described in terms of three natural resonant modes of the
structure: one even mode resonance of the shorted antenna struc-
ture and two odd mode resonances of the antenna when both
vertical conductors are open-circuited. The resulting lumped el-
ement model incorporates both the DC capacitance (for the even
modes) and the DC inductance (for the odd modes) in order to
account for the contributions of higher order resonances. In the
previous study on multi-element spherical antennas [1] only the
short circuit resonances were required to accurately describe the
impedance response. The inclusion of the open-circuited reso-
nances is required here due to the folded antenna geometry.

In Section IV, we use the lumped element model developed
in Section III to predict the antenna performance when the
connector piece is replaced by an inductor. The inductor tunes
the resonant frequency of one of the resonant modes while the
other two modes remain unaffected. By choosing the appro-
priate value for the inductance, the impedance bandwidth of the
antenna can be optimized. In Section V, the lumped element
analysis is used to quantitatively predict several features of the
far-field radiation pattern of the bandwidth optimized antenna.
This is done using the far-field patterns of the individual res-
onant modes combined with the lumped element impedance
model. Analyzing the far-field in this way provides a simple and
intuitive description of the physical mechanisms underlying the
radiation pattern distortions. In Section VI, the modal analysis
is applied to an asymmetric two-element capped monopole.
In this case, the analysis accounts for the current and voltage
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Fig. 1. Circuit models of (a) the fundamental short circuit resonant mode, (b)
the open circuit resonant modes, (c) the even mode impedance, and (d) the odd
mode impedance. The residual capacitance � and inductance � for the
even and odd modes, respectively, is determined by evaluating the DC capac-
itance and inductance of the structure, and subtracting from these values the
modal capacitances and inductances.

division ratios in the two conductor elements, which affect
both the modal parameters and the manner in which the modal
impedances are combined to determine the antenna impedance.
Section VII concludes with a discussion of the fundamental
limitations in the performance of this antenna.

There is one note to be added here regarding terminology. In
the lumped element model, the short-circuit resonances are as-
sociated with a (quasi) series RLC circuit, and the open-circuit
resonances by a parallel RLC circuit [see Fig. 1(a), (b)]. The nat-
ural resonant modes will always be referred to as “resonances”
even though the impedance response of a parallel circuit is more
commonly associated with the term “anti-resonance.” The term
“anti-resonance” will be used only when referring specifically
to features of the impedance function of the full antenna struc-
ture. The reason for this is that we wish to draw a distinction
between the “natural resonant modes” used to decompose the
antenna response, and the “resonances” and “anti-resonances”
of the impedance. As will be seen, there is not necessarily a
one-to-one correspondence between the two.

II. SIMPLE CAPPED MONOPOLE

We consider first the simple capped monopole antenna (see
inset Fig. 2) over an infinite ground plane. The height (from
ground to the underside of the cap) is 10 cm, the cap has a radius
of 9 cm and a thickness of 0.25 cm, and the vertical element has
a radius of 0.75 cm. The antenna is fed through the ground at
the base of the vertical element. The resonant frequency and

-factor of the fundamental resonant mode is found by shorting
the antenna terminal and performing a numerical eigenmode
simulation using perfectly matched layer outer boundaries. The
solver returns a complex frequency , and is de-
termined from . In this case, the fundamental
mode has a resonant frequency of 220.4 MHz and a .
This result is consistent with Wheeler’s equations for the capac-
itor antenna [10], [11], which predict a for a structure
of this size and aspect ratio, and is close to the lower bound of

predicted by the formalism in [12]. At resonance, the
height of the antenna is 1/13 wavelengths.

As discussed in [1], a lumped element model can be devel-
oped from the eigenmode parameters for a given feed config-

Fig. 2. Impedance behavior of the simple capped monopole (shown in the
inset). The modal analysis matches the simulated impedance very closely over
a two octave bandwidth around the fundamental resonant frequency.

uration if the radiation resistance of the mode at the resonant
frequency is known (or equivalently, if the characteristic
impedance [13] of the mode is known). For an electrically short
capped monopole, we assume a uniform current distribution in
the vertical element, and estimate the radiation resistance from

[14], where is the height and is the
resonant wavelength. In this case, . The cir-
cuit model of Fig. 1(a) is used to represent the fundamental
mode of all of the antennas presented in this paper; this res-
onant RLC circuit is identical to the form used by Chu [15]
to represent the equivalent circuit of an electric dipole mode.
For this circuit, the characteristic impedance is determined
from , and the remaining parameters follow from

, , and [13]. The results
for the fundamental mode of the simple capped monopole are
listed in Table I.

The structure has many additional resonant modes, but these
occur at much higher frequencies (in this example the second
resonance is near 1500 MHz), making the antenna effectively
single mode at low frequencies. As discussed in [1], the higher
order resonances contribute only a small amount of additional
capacitance in parallel with the fundamental mode. This residual
capacitance is found by evaluating the DC capacitance of
the structure (using numerical electrostatics), and subtracting
the fundamental mode capacitance from the DC capacitance.
The full impedance of the simple capped monopole is described
using the circuit in Fig. 1(c). The resulting impedance is shown
in Fig. 2, along with the results of the full harmonic simula-
tion of the antenna. The correspondence between the lumped
element model and the harmonic simulation is extremely good
over a two octave bandwidth around the resonant frequency. The
advantage of using the Chu circuit model [Fig. 1(a)] is that the
frequency dependence of the radiation resistance is accounted
for using a constant value of resistance in the circuit. This is an
improvement over the models discussed in [1].

III. TWO ELEMENT CAPPED MONOPOLE

Next we divide the monopole cap into two pieces, and con-
nect each piece to a separate vertical element, as shown in Fig. 3.
One of the vertical elements serves as the feed, and the second
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TABLE I
PARAMETERS FOR THE EIGENMODES OF EACH ANTENNA

Fig. 3. Two element segmented capped monopole antenna, where the con-
nector piece can be a perfect conductor (Section III) or a lumped element in-
ductor (Section IV).

vertical element is connected to ground. A connection between
the two halves of the cap is provided at the center. We first con-
sider the case where this connector piece is a perfect conductor.
The cap size and height are identical to the simple monopole
described in the previous section, the gap width is 1.5 cm, the
vertical elements have a radius of 0.2 cm, and the separation be-
tween the vertical elements is 3.0 cm.

The impedance behavior of this antenna can be described in
terms of three natural resonant modes. The fundamental reso-
nant mode of the shorted antenna occurs at 221.5 MHz; this is
the dominant radiating mode with a of 8.96. The fundamental
resonant frequency and size of this antenna are nearly iden-
tical to that of the simple capped monopole, and the -factor
of the mode is likewise nearly the same. In this mode, the cur-
rents in the two vertical elements are equal and in phase [see
Fig. 4(a)] and we refer to any mode with this symmetry as an
even mode. Due to symmetry in this mode, no net current flows
across the PEC connector between the two halves of the antenna.
The far-field radiation pattern of the fundamental mode is that of
a small electric dipole. The radiation resistance at resonance is
again found from the equation for a small monopole of uniform
current, where the slightly higher resonant frequency yields a

Fig. 4. Resonant modes of the two element segmented capped monopole an-
tenna with a PEC connector piece. The relative current magnitudes are roughly
indicated by the thickness of the arrows. In (c), the current across the connector
piece is � ��� radians out of phase with the other currents in the mode.

slightly higher resistance than in the previous case (9.04 ohms).
Due to the equal current division between the two vertical el-
ements, the feed terminal sees a resistance of twice this value.
Likewise, the mode has roughly twice the inductance (and half
the capacitance) as the fundamental mode of the simple capped
monopole in the previous section.

The other two resonant modes used to describe the an-
tenna performance are the natural resonances of the structure
with both vertical elements open-circuited at their base. The
open-circuit resonances will be represented by parallel RLC
circuits in the lumped element model [Fig. 1(b)]. These reso-
nances are characterized by currents of equal magnitude and
opposite phase in the two vertical elements (odd modes). The
two odd mode resonances are at 436.2 MHz and 663.8 MHz,
and differ from each other in the magnitude and phase of the
currents in the cap and connector relative to that in the vertical
elements [see Fig. 4(b), (c)]. The far-field radiation patterns of
these modes will be discussed in Section V. The RLC parame-
ters of these modes are found by estimating the modal radiation
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Fig. 5. Impedance behavior of the even and odd modes of the two element
antenna with a PEC connector piece (harmonic simulation and modal analysis).
The parameters in the models are determined from the impedance properties of
the individual eigenmodes.

resistance at their resonant frequencies (using the procedure
described in [1]), and applying the parallel circuit equations

and . For the odd modes, we
take the conductance at resonance and assume it varies as the
frequency squared, as expected for a small loop antenna [13].
While this has little effect on the impedance in the final model
(the odd mode resistance is very small at low frequencies), it
improves the accuracy of the far-field calculations discussed in
Section V.

As in the previous model, the full even mode impedance is de-
termined by calculating the residual capacitance contributed by
the higher order even modes, derived numerically from the DC
capacitance. Likewise, a numerical calculation of the DC induc-
tance enables a determination of the residual inductance ( ,
found by subtracting the sum of the two odd mode inductances
from the DC inductance), and the full odd mode impedance is
the series combination of with the two odd mode imped-
ances and [see Fig. 1(d)]. (In each case the computed DC
values are divided in half to account for the current division in
the two vertical elements.) The parameters determined for all
three modes, along with the DC values, are listed in Table I.
Fig. 5 shows the individual even and odd mode impedances of
the model as compared to the harmonic simulation (the even and
odd mode groups are excited individually in the harmonic sim-
ulation by using appropriate dual source current conditions [1]).
Excellent agreement is observed.

The impedance of the antenna when only a single vertical el-
ement is fed (and the other element is grounded) is found using
an appropriate combination of the even and odd modal imped-
ances. The general equation for combining the two impedances
is

(1)

For this case (symmetric structure), the magnitude of the cur-
rents and voltages in each arm are equal, so that , and
the resulting impedance is the parallel impedance of twice the

Fig. 6. Harmonic simulation (squares and circles) of the two element antenna
with a PEC connector piece, when the antenna is driven on a single vertical el-
ement (with the other element grounded). The lines show the lumped element
model derived from an appropriate combination of the even and odd modal im-
pedances as shown in the inset.

modal impedances (see inset Fig. 6). (A different value for is
required in the asymmetric structure considered in Section VI.)
Equation (1) is known from studies of folded dipole antennas
[14], [16] and was also discussed in the context of the eigen-
mode modeling of multi-element antennas in [1]. The model of
the full antenna impedance is shown in Fig. 6, along with the re-
sults of the harmonic simulation; there is again excellent agree-
ment between the two. The radiation resistance around the fun-
damental resonant frequency is roughly 4 the value seen in the
simple capped monopole antenna. This increase is a well-known
effect in folded antenna geometries; it arises from the current
division (2 ) and the combining of the even and odd modal im-
pedances (2 ). The increase in the resistance helps the antenna
to achieve an impedance closer to 50 ohms at its resonance than
in the single element case (see Smith chart inset in Fig. 6).

We have successfully described the impedance of this antenna
using the properties of three natural resonances. Not all of these
natural resonances appear as resonances or antiresonances of
the full antenna impedance function, and there are other zeroes
and poles in the impedance function that do not correspond to
the natural resonances we have chosen. A good example of this
is the antiresonance near 175 MHz seen in Fig. 6. This antires-
onance does not appear when the odd or even mode group is
excited individually; it is a consequence of combining the two
modes. The odd mode places a zero at DC, and the even mode
places a zero at 222 MHz; mathematically, a pole must appear
between any two zeroes in the impedance function [13]. The pa-
rameters of this pole depend upon the other poles and zeroes we
have already specified. Describing the antenna behavior in terms
of its natural resonances is not simply a matter of identifying the
poles and zeroes of its impedance, but requires some degree of
physical reasoning. The resonant modes used here correspond
to elementary modes of current oscillation and radiation that are
well understood (small electric dipoles and loops), and the nu-
merical eigenmode solver is an essential tool for developing the
model.
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Under the right circumstances, higher order resonances can
help broaden the impedance bandwidth of the antenna. That
effect is not observed here: the matched VSWR bandwidth
near 222 MHz for this antenna is nearly the same as the simple
capped monopole (for , we expect a 10 dB return
loss bandwidth of 7.4%, and this is observed for both of these
antennas when fed from matched transmission lines). In order
to broaden the bandwidth, we introduce a lumped element
inductor into the structure.

IV. TWO ELEMENT CAPPED MONOPOLE WITH INDUCTOR

We consider the same structure as in the previous example,
but replace the connector piece in Fig. 3 with an inductor. The
lumped element model of the PEC-connector antenna is used to
predict the behavior with the inductor. Due to symmetry, the in-
ductor has no effect on the even modes (no current flows across
the connector in these modes); the model of the even modes
remains identical. It is easily verified numerically that the in-
ductor has almost no effect on the odd mode at 663.8 MHz
(the resonance shifts by a few tenths of a percent from the case
of a PEC connector to the case of a fully open-circuited con-
nector). The physical reasons for this are more subtle. In the
PEC connector case, the currents flowing across the connector
in the 663.8 MHz mode are 90 degrees out of phase with the
currents in both the vertical elements and the cap regions. The
height of the monopole at 663.8 MHz is nearly a quarter wave-
length (and almost exactly a quarter wavelength when half the
separation distance between the vertical elements is included).
Adding the inductor across the top of the antenna therefore has
solely the effect of tuning the resonant frequency of the first odd
mode to lower frequencies while holding the parameters of the
other modes constant.

We include the inductor element in the model by simply
adding half its value to the modal inductance of the first odd
mode while keeping its capacitance the same. (The value is
halved because the inductance is shared equally between the
two vertical elements.) As the resonance shifts to lower fre-
quencies, the -factor of the mode increases; the new -factor
is determined using an eigenmode simulation of the structure
including the inductor. Once the new is known, the resis-
tance is determined from the parallel circuit equations. The
residual inductance contributed by the higher order modes
remains the same. The impedance predicted by this analysis
for several values of inductance is illustrated in the Smith chart
in Fig. 7(a). The effect of moving the odd mode resonance to
lower frequencies is to gradually close the loop in the Smith
chart. We will study in detail the case of an inductance of 180
nH. The full harmonic simulation for this case is shown as
the circles and squares in Fig. 7(b), along with the impedance
predicted by the modal analysis. The agreement here is excel-
lent, and similar agreement is also observed at other values of
inductance (not shown here).

An inductor value of 180 nH shifts the odd mode from 436
MHz to 150 MHz. The modal parameters near 150 MHz are
difficult to determine accurately due to its high ( 1762), the
resulting high resonant resistance ( 1.76e5 ohms), and the sen-
sitivity of the simulation at this frequency to the size of the

Fig. 7. (a) Smith chart illustrating the predicted impedance of the two element
antenna with various values of inductance used to connect the two segments. The
added inductance only changes the parameters of the first odd mode, the other
modal parameters are identical to the PEC connector antenna. (b) Impedance of
the 180 nH inductor antenna, with the squares and circles showing the harmonic
simulation.

numerical computation region; this may explain the small dis-
crepancies seen in the results in Fig. 7(b). The two poles in the
odd-mode impedance (150 MHz and 664 MHz) produce a zero
with low radiation resistance at 260 MHz; its effect is clearly
evident in the full antenna impedance response at this frequency.
Note that the full impedance does not contain a resonance near
220 MHz, the resonant frequency of the fundamental mode (an
impedance resonance is defined as a frequency where the reac-
tance is zero with a positive slope). This is due to the additional
reactance contributed by the odd modes at this frequency, and
illustrates again that there is not always a direct correspondence
between the natural resonances of the antenna structure and its
impedance resonances. However, it remains true that the prop-
erties of the fundamental resonant mode at 221.5 MHz (its res-
onant frequency and ) determine the optimal frequency and
ultimate bandwidth limitations of this antenna.

The antenna is matched to 50 ohms using a 40 nH shunt in-
ductance placed at the feed point; this results in the return loss
curve shown in Fig. 8. The fractional 10 dB return loss band-
width of the antenna is 14.8%, double that seen in the simple
capped monopole (also shown in the figure) and the split capped
monopole with a PEC connector. The bandwidth is improved
due to the presence of the odd modes, which, according to our
lumped element model, operate like a higher-order matching
circuit. The inductor element is used to tune the properties one
of these modes in order to optimize the bandwidth. Other values
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Fig. 8. Return loss versus frequency for the various antennas discussed here.
The simple capped monopole is driven from a 9 ohm transmission line; the other
antennas are matched to 50 ohms, in some cases using simple tuning elements
at the feed point as described in the text. The�-factor of the fundamental mode
of all of the antennas is nearly the same in each case.

of inductance might be used, for example, if a different level of
return loss were used to define the operating range of the an-
tenna.

A resistor can be added in series with the lumped element in-
ductor to further broaden the impedance bandwidth. This con-
figuration is easily modeled using the same lumped element net-
work; the resistor is placed in series with the inductor element
in . In this manner, it is found that a 100 nH inductor in se-
ries with a 28 ohm resistor yields an antenna well matched to
50 ohms with nearly double the 10 dB return loss bandwidth
as in the previous case of the 180 nH inductor with no resistor
(see Fig. 8). The lumped element model also predicts the radia-
tion efficiency of the antenna. Both the impedance behavior and
efficiency predicted by the model closely match the harmonic
simulation. Unfortunately, the increased impedance bandwidth
is achieved at the cost of very low efficiency at the high end of
the band (less than 50% above 250 MHz), though the antenna
maintains good efficiency at the lower frequencies.

V. FAR-FIELD RADIATION ANALYSIS

A nice feature of the eigenmode analysis is its ability to pre-
dict the far-field radiation pattern using the relative excitation
levels of the various resonant modes [1]. The far-field patterns of
the three natural resonances for the 180 nH inductor antenna are
shown in Fig. 9. The fundamental even resonance is the donut
mode of the small vertical electric dipole with a directivity on
the horizon of 1.8 dBi. (All directivities are specified for the case
of a full dipole antenna rather than a monopole over an infinite
ground plane; only the relative directivities of the three modes
are required for the analysis.) The low frequency odd mode ra-
diates upward with a peak directivity at zenith of 5.8 dBi. This
mode has a null at the horizon along the y-axis, and its value
at the horizon peaks along the x axis at a level 25 dB below
the value at zenith. The 663.8 MHz odd mode has a peak direc-
tivity of 4.6 dBi at zenith, but also has an additional component
at the horizon along the x axis at 3.75 dB below the peak. This
mode also has a null at the horizon along the y-axis. In each of
the odd modes the polarization at zenith is parallel to the con-
nector piece. The directivities cited here were those at the reso-

Fig. 9. Far-field radiation pattern (linear scale) of the three resonant modes of
the 180 nH inductor antenna. The polarization is illustrated by the arrows.

nant frequencies. For the purposes of this analysis, we assume
the modal patterns do not change with frequency.

The lumped element model predicts the magnitude and phase
of the currents exciting each of the three modes. This knowl-
edge, combined with resistances of each mode, enables us to
predict the relative power levels and phases of the various modes
versus frequency. The full harmonic simulation is used to check
the accuracy of these models. The antenna radiation pattern
measured along the principal plane defined by the zx-plane is
shown in Fig. 10 for three frequencies (the field is polarized
purely in the plane, and due to symmetry there is no cross-polar-
ization component in the zx-plane). There are several features
in the patterns that we would like to explain. At 210 MHz (low
end of the operating range), the pattern is very close to that of
a vertical electric dipole, with a slight asymmetry. At 240 MHz
(high end of the operating range), the null at zenith has filled in
considerably and the asymmetry at the horizon has increased.
At 260 MHz (outside the operating range of the antenna) the
pattern is completely different.

The fundamental even mode has a null at zenith, and the two
odd modes have nulls along the y axis at the horizon. We de-
fine the modal power ratio as the radiated power at zenith to the
radiated power at the horizon (y-axis). This represents a ratio
of the combined power in the odd modes to the power in the
even mode. Because this ratio is defined in terms of power levels
measured at specific points, it represents the modal power ra-
tios scaled by the peak directivities. The individual total power
ratios of the two odd modes to the even mode ( and )
is calculated by the lumped element model from the following
equations:

(2)
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Fig. 10. Far-field radiation pattern of the 180 nH inductor antenna at three fre-
quencies: (a) 210 MHz, the lower end of the operating band, (b) 240 MHz, the
upper end of the operating band, and (c) 260 MHz, just above the operating
bandwidth.

Because the two odd modes are excited in phase with each other,
these two modes add constructively at zenith. To calculate the
modal power ratio, we take the square of the sum of the magni-
tudes, accounting for the peak directivities of the two modes

(3)

The results of both the modal analysis and the harmonic sim-
ulation are shown in Fig. 11(a). The harmonic simulation was
conducted such that the radius of the hemispherical computation
region was adjusted to 3/4 of a wavelength at each frequency;
doing this resulted in a smoother curve matching the model pre-
dictions exactly at the highest frequencies. Numerical artifacts
(like a 1–2 dB sensitivity in the simulated ratio depending upon
the size of the computation region) make it difficult to establish
precise values of the modal ratios in the harmonic simulation;

Fig. 11. Two parameters defining the far-field radiation performance: (a) the
modal power ratio and (b) the far-field asymmetry. In each case, the modal anal-
ysis provides a good quantitative match to the results obtained in the harmonic
simulation.

nevertheless, we see a striking correspondence between the sim-
ulation and the predictions of the modal analysis.

The curves in Fig. 11(a) indicate the increasing energy radi-
ated into the odd modes is the cause of the null filling at zenith as
the frequency is increased. The zero in the odd mode impedance
near 260 MHz produces the dramatic change in the far-field pat-
tern at this frequency. This zero causes most of the excitation
current to radiate in a combination of the two odd modes, with
little energy radiated in the even mode. Although this occurs be-
yond the operating frequency of the antenna, the proximity of
this zero to the operating regime causes the more modest pattern
distortions seen at 240 MHz.

We define the far-field asymmetry at the horizon as the ratio
of the power radiated along the two directions of the x-axis.
The asymmetry results from the horizon components of the 664
MHz odd resonant mode interfering with the even mode (the
low frequency odd mode radiates very little at the horizon and
is neglected). Because the odd mode has opposite polarity in the
two directions, the interference produces an asymmetry in radi-
ated power. The modal analysis predicts this asymmetry using

(4)

where is defined in (2). The factor of 0.8 in (4) accounts
for the 0.95 dB gain difference between the two modes in the
direction we are considering. To properly account for the modal
interference, there are two phase factors included in the analysis
( and ). The first is the relative phase between the excitation
currents of the two modes
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(5)

The second phase is the relationship between the excitation
current and the phase of the radiated electric field. Because we
are dealing with two modes, a small electric dipole and a small
current loop, it is reasonable to expect the modal fields to be
radians out of phase for an identical drive current. The predicted
far-field asymmetry assuming is shown in Fig. 11(b)
as the dashed line. Although this line matches the harmonic sim-
ulation at low frequencies, there is a 1–2 dB offset between the
curves at frequencies above 260 MHz. The source of this offset
is a small variation in the modal phase difference in the har-
monic simulations. When the simulated values of are included
in the modal analysis, the match between the simulation and the
model is very good (for the 3/4 wavelength radius computation
region, varies linearly from to over the frequency
range, and this small deviation from causes the observed
discrepancy). The variation in is quite sensitive to the radius
of the computation region and likely represents a numerical arti-
fact. The dashed line in Fig. 11(b) may well be the more accurate
prediction of the far-field asymmetry over this wide frequency
range. Within the operating range of the antenna, however, these
discrepancies are very small.

VI. ASYMMETRIC TWO-ELEMENT CAPPED MONOPOLE

Wider bandwidth operation of the two element capped
monopole can be obtained without an inductor by using vertical
conductors with differing radii. In this section, we consider an
antenna with the same height and cap radius as the previous
case, but with a driven element radius of 0.2 cm and an undriven
element radius of 0.75 cm. The two vertical elements are spaced
close to one another; the gap width is 0.2 cm, the driven ele-
ment is located 0.32 cm to one side of center, and the undriven
element at 0.95 cm to the other side, for a total center-to-center
separation of 1.27 cm. The asymmetric antenna structure is
illustrated in Fig. 12(a). The modeling procedure is similar
to previous examples, with a few modifications necessary to
account for the asymmetry.

For the fundamental mode, the shorted antenna gives a reso-
nant frequency of 223.1 MHz and a . The mode has
in-phase, but unequal, currents in the two vertical elements, with
the larger current in the fat conductor (a 2.6:1 current division
ratio was determined from the eigenmode simulation). A short
monopole of uniform vertical current at this frequency has a ra-
diation resistance of 9.18 ohms; the modal resistance seen at the
drive terminal is 3.6 higher than this (33 ohms) due to the cur-
rent division ratio (the drive terminal sees 1/3.6 of the total cur-
rent). Likewise, the DC capacitance determined for the antenna
structure (12.5 pF) is reduced by the same factor to account for
the current division. The lowest frequency odd mode of the an-
tenna with both vertical elements open-circuited at their base is
at 695.9 MHz. (This is the quarter wave mode seen previously;
there is no mode analogous to the 436.2 MHz mode observed
in the earlier example.) For the odd mode, the currents in the
two arms have opposite phase, but the voltages observed at the

Fig. 12. (a) The asymmetric two element capped monopole antenna. (b) Smith
chart and (c) plot of the antenna impedance when fed through the thin conductor.

open-circuit bases are not equal: the voltage under the thin ele-
ment is 5.5 that in the fat element at resonance. The DC induc-
tance determined for this structure is divided in half to account
for the current division between the two arms. The resulting pa-
rameters of the two modes are listed in Table I.

In order to model the behavior of the antenna when driven
solely from the thin vertical element (with the fat vertical ele-
ment shorted to ground) the two modal impedances are com-
bined using (1) with an appropriate value of the parameter .
As discussed in [1], this parameter is derived by assuming each
mode is excited using appropriate dual drive current sources (a
source at the base of each element), and the two drive conditions
are combined to set the terminal voltage to zero in the grounded
element. For this case, is the terminal voltage ratio for the odd
mode (the ratio of the odd mode voltage under the undriven el-
ement to that under the driven element). The analysis is com-
plicated by the fact that this ratio varies with frequency; the
ratio near the fundamental mode resonance is roughly double
that observed at the odd mode resonance of 696 MHz. Because
of this, we use a value of . This value produces an
impedance curve matching the harmonic simulation of the an-
tenna very closely over a wide range of frequencies, as seen in
Fig. 12. The antenna is matched to 50 ohms using the combina-
tion of a 19 pF series capacitance and a 20 pF shunt capacitance
at the drive terminal; the resulting return loss curve is shown in
Fig. 8.

VII. DISCUSSION

We can use the eigenmode analysis to assess the optimality
of these designs with regards to the fundamental limitations on
small antennas. The fundamental lower bound on the of an
antenna (as related to its normalized size ), discussed by Chu
and others, is well known [15], [17]. The exact of this antenna
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could be derived numerically using the procedure described in
[18], or could be predicted using our lumped element model.
(The quantity , derived in [18] as a means of estimating the
exact from the impedance, is not an accurate measure of the
exact for cases where the impedance resonances are closely
spaced in frequency [19].) However, the exact is not the rele-
vant parameter for comparing performance to fundamental limi-
tations. The presence of higher order modes increases the stored
energy in the antenna, increasing its , even as these modes help
broaden the bandwidth [19], [20], meaning there may not be a
direct correlation between the exact and bandwidth. As dis-
cussed in [1], the most important parameter to evaluate is the

-factor of the fundamental resonant mode of the antenna.
The Chu lower bound for (the normalized size for

these antennas at resonance) is 5.6, meaning the fundamental
mode of this antenna achieves a at 1.6 the lower bound.
A more precise evaluation is made by considering the lower
bound on the for the same cylindrical volume as this antenna.
As mentioned in Section II, the lower bound defined by the
Gustafsson et al. formulation [12] is at 220.4 MHz,
and the antennas here achieve a fundamental modal slightly
above this value (the lower bound drops a bit as the frequency
increases). These modes have close to optimal -factors; un-
derstanding the limitations on bandwidth, however, requires one
additional step.

As seen in Fig. 8, there are several techniques for manipu-
lating the higher order resonances to widen the return loss band-
width of the antenna. The bandwidth improvement does not re-
sult from a reduction in the of the fundamental mode ( 9
in all cases). The improvement results because the higher order
resonances act like a higher order matching circuit placed in
front of an antenna with the impedance parameters of the funda-
mental mode (similar behavior was seen in [1]). The asymmetric
antenna presented in Section VI achieves a band-
width of 203.7–250.5 MHz, roughly 20.8%, or 2.6 wider
than the single resonance bandwidth expected for .
The Fano matching limitations [21] applied to a simple series
RLC circuit (with constant resistance), state that a single addi-
tional matching circuit improves the bandwidth by,
at best, a factor of 2.31 [22], [23]. However, the fundamental
mode in this case is not modeled as a simple series circuit, but
rather as the circuit of Fig. 1(a). The conventional Fano limit dis-
cussed in [22], [23] is only accurate for this circuit in the limit
of very small [24]. By determining the Fano limit for the cir-
cuit in Fig. 1(a), we could assess the optimality of this design.
(Reference [24] determines this limit for the case of an infinite
number of matching circuits, but not for a single matching cir-
cuit). Doing this would clarify to what extent this antenna ap-
proaches the widest possible bandwidth for a double resonant
antenna of its size, and what role the far-field distortions play in
contributing to this performance.
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